tagging.tech

Audio, Image and video keywording. By people and machines.


Leave a comment

Tagging.tech interview with Mark Sears

Tagging.tech presents an audio interview with Mark Sears on crowdsourcing

 

Listen and subscribe to Tagging.tech on Apple PodcastsAudioBoom, CastBox, Google Play, RadioPublic or TuneIn.

 

Transcript:

 

Henrik de Gyor:  This is Tagging.tech. I’m Henrik de Gyor. Today, I’m speaking with Mark Sears. Mark, how are you?

Mark Sears:  I’m doing great, Henrik, Thank you.

Henrik:  Mark, who are you and what do you do?

Mark:  My name is Mark Sears. I’m Founder and CEO of Cloud Factory. We spend a lot of time leveraging an on-demand workforce to structure data. We take a lot of unstructured data per clients and we process that in the cloud using a combination of human and machine intelligence. We do that for a lot of, mostly tech companies. We work a lot with technology companies that are looking for an API driven workforce to do tons of different use cases very relevant often to tagging tech would be things like tagging images for the purpose of machine learning. Or tagging images in terms of core business processes for things like intelligence. We do transcription and translation. We do a lot of document processing, again, trends like processing receipts and invoices. We do web research going out to do human powered screen scraping for lead generation, serum enrichment.

A lot of different, very tedious, routine, repetitive work. We do it in a bit of a different model. Again, what we refer to as cloud labor. The ability for organizations to send their work to the clouds and have it come back done accurately, quickly, cost-effectively in hours if not minutes. So that’s kind of the world that we claim.

Henrik:  Mark, what are the biggest challenges and successes you’ve seen with crowdsourcing?

Mark:  When we think of crowdsourcing, we often like to look at it compared to maybe more traditional outsourcing model. We actually consider ourselves to be somewhere in between. So, my view of the world is that traditionally having a large number of people working in a delivery center … Offshoring, outsourcing. You need to get work done. This is one option that obviously a lot of companies have used in the last 20 years. Is to send that work to a team, maybe thousands of people that are sitting in urban India, Philippines or China. That’s one way to get a lot of this type of paperwork done.

Another way, that’s more popular, recently, is to send it to a crowd and to do crowdsourcing. Our kind of view of the world is that crowdsourcing and sending out work to anonymous crowds, someone who maybe just signs up online and there’s not a really high level of engagement, accountability or ability to get quality from out of an anonymous, faceless crowd. We see that on one side of the spectrum. We see the other side of the spectrum being a traditional outsourcing. The view of the world that we have is right in between. It’s the idea of having an on-demand workforce that is leveraging automation and is highly efficient because of technology. But, at the same time, is not an anonymous crowd. We actually know and train, professionally managed and curated crowd. I think that’s a roundabout way of talking about how we view the world that I’ve seen and learned through a lot of different projects … The biggest challenge is often quality.

It’s really harnessing the tower of an anonymous crowd is something that’s quite hard to do. So we love kind of playing in the hybrid and finding that radical middle where you get the best of all worlds in terms of quality, scalability, elastically, cost-effectiveness, speed of turn around, etc. to accomplish your large data work projects.

Henrik:  Mark, as of April, 2016, how do you see crown sourcing changing?

Mark:  Moving forward, there’s no question that the rise of robots and the flattening of the world are two major trends that are affecting, not just crowdsourcing, but really the future of work and really how enterprises get their work done. As we think of both of those trends, the world becoming more and more flat because of mostly the internet as well as just the cost of devices to access the internet. We’ve had 1.1 billion people have come online in the last five years’ And there’s another billion expected in the next five years.

So you have this massive, global workforce that are now able to contribute to the tagging, and again, the routine repetitive work that every organization has deep inside that needs to get done. This new, untapped potential in being able to do online work and to leverage the talent that is equally distributed around the world. Again, acknowledging that opportunity is not. And so, we can really flatten the world with the internet with crowdsourcing and other online work approaches.

The other side of it again, is automation and the rise of robots. Any project or solution that is not thinking first how do we automate this … Is going to be left behind. We absolutely have to leverage technology. Automation takes on a different forms. Actually, automating the work itself, using AI, ML, etc, to automate pieces of our tagging, labeling, video, audio, transcribing processing type of workloads is definitely essential to do that. But a lot of the technology just is not there. Looking first to see what pieces can you actually automate.

And then also, of course, there’s the delivery and the receipt of the work. Being able to have the API to be able to send the work in and have it sent back once the work is completed, that automation. Having the automation of the workflow is well to streamline and speed things up and make things more cost-effective.

There’s automating the actual work and there’s the automating of processes of getting the work done and delivering and receiving that one. Really, I see that’s a huge trend that everyone is how do we make this more streamlined, more efficient, faster, more cost effective, less manual touches in these projects to really, really make things more effective. That does include, as well, trying to automate as much of the work that we can do -That’s one thing that we have really seen just the desire and requirement to find the right mix of human and machine intelligence for every project. For every solution. It really is different for every solution.

Trying to automate as much as we can with the approach, but obviously, there’s a lot of nuances in doing, kind of split, AB testing to kind of understand really what is the best, total cost of ownership of the solution depending on how much automation you include. Those are two trends definitely play into the future of getting this type of work done.

Henrik:  Mark, what else would you like to share with people looking into crowdsourcing?

Mark:  I think the key thing is understanding self serve versus full serve. There’s no question there’s power in leveraging a global workforce and accessing online and being able to send your repetitive data projects to a crowd. The question is that there is experience in doing that. A lot of people do like to have a self serve approach and accessing it themselves. Other people prefer to have experts that are there to help along the way in terms of making sure that you’re getting the quality out of the crowd that you’re expecting.

I think that as we look at the landscape, one way, I think somebody should be thinking about their project is, am I ready to do this on my own or is it better to maybe work with a little more enterprise-grade approach? We often encourage people to think about that span. If you’ve got a smaller project that you need done really quick, quality is not the highest priority. It’s going to be more that you just need it done quick and cheap. I think self-serve options to send that work out and get it back it really where you want to be going.

If you have a larger project or an ongoing project, one that requires really getting good, accurate work done, maybe there’s an opportunity to find a portion of that to be automated. All of those things, I think, you want to be looking for a little bit more of an enterprise-grade. Maybe a full service, professional service type approach. I think is a key thing that we would recommend that people think through as they begin to look at crowdsourcing as a way to get their project done.

Henrik:  Mark, where can we find more information about crowdsourcing?

Mark:  Crowdsourcing as a term has definitely been broad and changed. I think the usual source of Googling crowdsourcing is going to lead you in a lot of different directions from crowdfunding to Wikipedia to a lot of different directions. There definitely are some sources that are out there, but there’s not that many players that are really in this space. I think it’s great to take a look at everyone’s approach in terms of how, exactly the tools that they provide access to … Where you’d access the crowd. The services that they provide. How they manage, recruit and train and vet their workforce, their crowd. I think probably the best way is really to get out there and explore some of the different options that are available from different partners.

Specifically, in terms of finding some other places online to learn crowdsourcing.org is one good resource. Specifically, they have a cloud labor tab that has some good information. You can follow along and see how people are leveraging these distributed, virtual labor pools to fulfill a large variety of tasks. That’s one great place. Obviously, our particular take on the world at cloudfactory.com is another option … Thoughts and resources and some articles and such again that help people think through how to really leverage the technology platform with a global workforce to accomplish their large data projects.

Henrik:  Well, thanks Mark.

Mark:  Thank you.

Henrik:  For more on this, visit Tagging.tech. Thanks again.


 

For a book about this, visit keywordingnow.com

 

 


Leave a comment

Tagging.tech interview with Georgi Kadrev

Tagging.tech presents an audio interview with Georgi Kadrev about image recognition

 

Listen and subscribe to Tagging.tech on Apple PodcastsAudioBoomCastBoxGoogle PlayRadioPublic or TuneIn.

 

Transcript:

 

Henrik de Gyor:  This is Tagging.tech. I’m Henrik de Gyor. Today, I’m speaking with Georgi Kadrev. Georgi, how are you?

Georgi Kadrev:  Hi, Henrik. All good. I am quite enthusiastic to participate in the podcast.

Henrik:  Georgi, who are you and what do you do?

Georgi:  I’m Co‑Founder and CEO of Imagga, which is one of the pretty good platforms for image recognition as a service. We have auto‑tagging and auto‑categorization services that you can use for practical use cases.

Henrik:  Georgi, what are the biggest challenges and successes you’ve seen with image recognition?

Georgi:  In terms of challenges, I think, one of the biggest ones is that we, as human beings, as people, we are used to perceive a lot of our world through our eyes. Basically, when people think in general about image recognition, they have a very diverse and a very complete picture of what it should do.

Let’s say from optical character recognition or recognizing texts, to facial recognition of a particular person, to conceptual tagging, to categorization, all these different kinds of aspects of visual perception.

People typically have expectations that it’s the same technology or the same solution, but actually, quite a lot of different approaches needs to be engaged into the actual process of recognizing and understand the semantics of the image.

In terms of successes, like addressing this, I can say that not surprisingly the deep learning thing that is quite a big hype in the last few years have been a huge success into the more conceptual or class‑level object recognition. This is what it is as a type of object.

Is it a bottle? Is it a dog? Is it a cat? Is it a computer? Is it mobile phone? and so on. This has become pretty practical, and right now we can say that we are close to human level in recognition of a lot of different classes of objects.

At the same time, in some other spaces, like lower recognition, like facial recognition, we also see quite big appreciation rates that allow for practical applications.

I can say one of the good things is that we are more and more closely to automating, at least, part of the tasks that needs to be performed by a computer, replacing the need for manual annotation of photos for different use cases.

In terms of challenges, maybe I would also add that you still need a lot of data, a properly annotated data. In machine learning and in deep learning in general, it’s very data‑greedy, so we need an enormous amount of samples to really make something robust enough and practical enough.

We still see the gathering a high‑quality dataset is one of the challenges. This is something that we also try to internally address. It helps us be more competitive in terms of quality and the technology.

Henrik:  As of March 2016, how do you see image recognition changing?

Georgi:  What we definitely see that there are more and more services. Some of them are pretty good quality that try to automate different aspects of image recognition that I briefly tackled.

We see even big players like Google starting to offer services for some of those things like what they call label recognition or what we call tagging, what they call optical character recognition or most of the vendors call it that way.

We also have seen logo and facial recognition being quite popular and being utilized more and more in different kinds of brand monitoring services.

At the same time, from the perspective of a bit of downside of visual recognition, something that we see when we talk about highly artistic images or some more specific art or other types of specific content, still the technologies needs to be customly‑trained for that.

If possible at all to train a classification‑based image recognition to recognize different kinds of artistic images or different kinds of very specialized image content.

It’s related with what I had mentioned in the beginning, that if you have a specific task, sometimes you need a specific approach. Deep learning to a certain extent has addressed this, but still it’s not like one-size-fits-all solution. We see that in a lot of cases the customers need to define a specific problem so that they can have a very good and precise specific solution.

Henrik:  As of March 2016, how much of image recognition is completed by humans versus machines?

Georgi:  I would say, [laughs] honestly depends on the task. We’ve seen some cases that machines can be better than humans and not just in theory, in practice.

For example, if we train a custom classifier with the human‑curated data set, and then we do some kind of testing or validation, we see that the errors, the things that are reported as errors in the learning process can actually mean errors by the people.

It’s mistaken when it has annotated the photo so that then it’s false reported as an error, although it’s correct. In a way, this is promising because it shows the automation and consistency that machines can do is pretty good in terms of precision.

At the same time, there are tasks where if you have a lot of explicit or implicit knowledge that you need to get in order to resolve an automation task. A lot of background knowledge that people have is not available for the machine and then you need to figure out a way how to either automate this or use a combination between a computer and a human, or you can decide this as a fully humanic task.

Still, it’s not approachable by technical approach. I cannot give an exact number. Something interesting that I can share is a statistic, we did a pretty interesting experiment called Clash of Tags, where we ask people. We have a data set of stock photography. This stock photography has existing set of tags provided by various people like the stock photographers themselves.

Then we also have the same set of images of stock photos that are annotated using current technology, completely blindly from the original tags that people have put for the image. Then, we do this thing, we ask people, “Type a keyword and then you get search results.”

One of the set of results on the left‑hand side or the right‑hand side is not known in advance, but one of the set of results is based on the tags that people have put, and the other set of results is based on the tags that our API has generated and has been assigned to the images.

The user needs to pick which is the winning set. In a lot of cases, I can say in 45 percent roughly of the cases, people have chosen that result set based on automatically generated tag is better than the set of results based on human‑provided tags. It’s not more than 50, but still means in a lot of cases the machine has been superior to the human performance.

I believe this number will grow in the future. I can say it’s still a way to go to something like complete automation, but we are getting closer and closer and we’re enthusiastic about it.

Henrik:  Georgi, what advice would you like to share with people looking into image recognition?

Georgi:  I would say, have a very clear idea of what kind of venue you want to drive out of that and try to optimize for that. Either working on it yourself or with a vendor. Make it really clear what are your objectives, what are your objections about image recognition. Just think from the practical aspect.

This is something that me, personally and the whole of our team has always been stressing on. Let’s see what it does and what it can do and what it can’t and address. If they’re really a pain that can be solved right now or not. Also from the vendor side, I would suggest don’t over‑promise because it’s quite easy to get people a bit confused.

They have an expectation like, “It’s AI so it can do anything?”, but you need to be realistic, so you save your time and you save your potential customer time. If the use case is very clear and if he was a professional then commit that this is going to work out, then go for it. Other than that, don’t waste time, yours and your potential customers.

This is something that we saw a lot, because a lot of people ask about features that currently technically are not practical enough or they ask about features that we don’t have. We learn the hard way and to certain extent to say, “This is possible, this is not possible currently from our perspective.”

Henrik:  Where can we find more information about image recognition?

Georgi:  Depending on what you need. Do you need more data for training, or do you need more basic knowledge, or do you need different kind of inspirations about business applications? There are different sources.

Obviously, ImageNet and all the accompanying information and the algorithms that we have around this pretty nice dataset is quite useful for researchers. We also have for beginners in image recognition, we have all these set of Coursera courses.

One of the most notable one from Stanford University. A few more pretty good ones from most of the top European or American universities. We have different kinds like newsletters and digests. AI Weekly is pretty good inspirational wise. There is some mixture of research topics, business cases, cool hacks and ideas about what you can do with image recognition.

Henrik:  Well, thanks, Georgi.

Georgi:  Thanks a lot, Henrik. I hope your audience will enjoy the podcast, including our participation in it.

Henrik:  For more on this, visit Tagging.tech.

Thanks again.


 

For a book about this, visit keywordingnow.com